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As a simple model of dielectric relaxation we study two-dimensional assemblies of 
rough disks at various densities p by the method of molecular dynamics. The electric 
moment autocorrelation function $(t) as well as its Fourier transform J(W) and the 
dynamic dielectric function S(W) are determined. A clear change from inertial behavior 
towards Debye relaxation is observed as p increases. The angular velocity autocorrelation 
function is also considered and the results are compared to a simple stochastic model. 

1. INTRODUCTION 

The dielectric relaxation of an isotropic and homogeneous assembly of polar 
molecules is related to the time-dependent autocorrelation function of the total 
electric moment of the system 

where (a**) represents the canonical average over all configurations for zero 
external field. For a spherical sample of unpolarizable molecules, the frequency- 
dependent dielectric constant C(W) is given by [l] 

E(O) - 1 
l (W) + 2 

= g jr [-4(t)] epiwt dt 

or alternatively 

+> - 1 
4W> + 2 

- 5 [l - k&(w)], 
s 

where E$ is the static dielectric constant and &CO) is the Fourier transform of #(t), 

&co) = j,” t)(t) eeiwt dt. 
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The function #(t) is of course related to the rotational relaxation of the molecules. 
At infinitely weak coupling, #(t) results essentially from the inertial motion and 
corresponds approximately to a Gaussian function with a characteristic time 
(I/kT)l12, where I is the moment of inertia of a molecule 12-41. In dense liquids or 
highly compressed gases, experiments show that #(t) roughly behaves like an 
exponential function with a microscopic relaxation time TV , 

s)(t) CT?! e+R, &lJ) ‘v TR 
1 + iC0TR’ 

in reasonable agreement with the theory of Debye [5], so that 

E(W)-1 -ES-l 1 
e(u) + 2 - E, + 2 1 + iwrR ’ 

Of course deviations from this formula are bound to occur at sufficiently high 
frequencies on account of inertial effects which predominate at short times [6, 71. 

Starting from an initially dilute system and increasing steadily its density, one 
expects #(t) to change approximately from a Gaussian to an exponential function 
in a smooth manner, depending of course on the nature of the orientational 
intermolecular forces involved, and it would be interesting to know the relative 
effectiveness of the various types of forces. Although this question can in principle 
be settled by statistical studies of “model hamiltonians,” the difficulties are 
considerable and rather few results are available yet. One could, roughly speaking, 
classify angular-dependent forces into: 

(a) Weak ones acting at long or medium ranges, such as dipolar interactions; 
(b) Strong ones acting at short range only and related to the precise shape of 

the molecules. 

The role of weak forces in dielectric relaxation has been discussed by several 
authors. On the basis of semimacroscopic models Scaife [8] and Zwanzig [9] 
concluded that dipolar interactions play a minor role only. This was confirmed 
by Kestemont [lo] who studied analytically an array of dipoles on a rigid lattice, 
using Prigogine’s statistical theory of irreversible processes in the weak coupling 
limit. Bellemans et al [4] amplified these conclusions by studying this same model 
on a computer by the method of molecular dynamics, originally devised by Alder 
and Wainwright [ll] for investigating hard disks and hard spheres assemblies. 
In agreement with Kestemont they observed that dipolar interactions did not lead 
to a Debye relaxation but that even at relatively high coupling, t,,h(t) remained 
approximately Gaussian and that no other characteristic time than (1/M’)‘l” did 
appear. This relative independence of dielectric relaxation on weak forces was also 

observed for quadrupolar effects and confirmed by other authors [12]. One 
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noticeable exception is the classical spin-spin interaction favoring parallel alignment 
of the dipoles, which lead approximately to a Debye relaxation; this interaction 
seems however rather unrealistic [4]. 

From the preceding discussion we may expect that the essential role in dielectric 
relaxation is played by strong interactions. These however are extremely difficult 
to handle theoretically because perturbation methods usually fail completely. Only 
a few calculations have been made, mainly based on stochastic models of collisions 
[2, 131, and it is clear that computer experiments would be extremely valuable for 
exploring this field. Although, many sophisticated strong potentials could be 
handled by the method of molecular dynamics (such as dumb-bell Lennard-Jones 
molecules [14]), we believe it wiser to limit ourselves at first to the very simple 
model of rough spheres which is well known in the kinetic theory of gases [15] and 
may be easily treated stochastically. 

2. ROUGH SPHERES AND ROUGH DISKS ASSEMBLIES 

Consider an assembly of N rough spheres of mass M, inertial momentum Z 
and diameter D. The trajectory of the center of each sphere between two successive 
collisions is a straight line so that the kinematics of this system is as simple as that 
of smooth spheres. The dynamics is however different: When two rough spheres 
collide, they grip each other at their points of contact without slipping; each of them 
is at first strained by the other, then this strain energy is released and transformed 
into translational and rotational kinetic energies in such a way that the relative 
velocities of the points of contact are exactly reversed. As a result each collision 
entails an energy transfer between rotational and translational degrees of freedom, 
depending on the dimensionless quantity 

R = 4Z/MD2 (6) 

In order to discuss dielectric relaxation with this model we consider that an 
electric dipole p is located at the center of each sphere. We however assume p 
to be vanishingly small so that neither do these dipoles influence the trajectories 
of the spheres nor are they correlated to each other. (This seems justified by our 
previous observations that dipolar forces are relatively unimportant). Hence, 
we have 

<MY = cc <I+. IQ = Np2, 
i Y 
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so that 

w> = o@) . w>, (7) 

where u is the unit vector pointing in the direction of the dipole of a molecule. 
Hence, #(t) is identical in the present case to the orientational autocorrelation 
function of a molecule. Also, in the limit p -+ 0, both E, and G(W) tend to unity 
so that (2) may be rewritten as 

E(W) - 1 
Es -1 = 1 - iC&(w). 

Up to now we limited our investigation to two-dimensional systems of rough disks 
instead of spheres. This simplifies the problem without altering too much its 
physical relevance and saves about 50 % of computing time. The application 
of the method of molecular dynamics to hard disks and hard spheres has been 
extensively discussed by Alder and Wainwright [l I] and will not be described here. 
We shall however quote the equations determining the change of velocities of a pair 
of colliding rough disks, denoted [I 51 as 1 and 2: 

VI’ =h+&[V+;k(k.V)], 

V2 ‘=v2- & [V + ;k(k-V)], 
(9) 

a* = % - (, +211)D k A V, 

%’ = % - (1 +2R)o k A V. 

Here v1 , v2 , vl’, v2’ and 51, , Q, , sL1’, Sz,’ are, respectively, the translational and 
rotational velocities, where the prime variables correspond to the situation after 
collision; V is the relative velocity of the points of contact before collision 

V = v2 - v1 - +Dk A (a, + sl,) (10) 

and k is the unit vector in the direction of the line from the center of the second 
molecule to that of the first at collision. Note that in the present case the trans- 
lational velocities are two-dimensional vectors while the angular velocities, normal 
to the plane of the disks, are actually algebraic numbers. 

We end this section with the derivation of $(t) in the limit of infinitely weak 
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coupling. Each disk rotates independently with a constant velocity Sz distributed 
according to the normalized Boltzmann law 

(27~Z/kT)+~ exp( - $ZQ2/kT). (11) 

It follows that 

(u(O) . u(t)) = (cos fit) = exp(-&t%T/Z). 

From now on we shall put (Z/H)‘/” equal to unity so that the autocorrelation 
function at infinitely weak coupling may be written as 

y&(t) = exp(-+t”) (12) 

and its Fourier transform is given by 

(13) 

3. RESULTS OF THE COMPUTER EXPERIMENTS 

Several systems of approximately one hundred disks have been studied on the 
computer of the Free University of Brussels (IBM 7040 - 32 K) by the method of 
molecular dynamics, at various densities and for two particular values of the 
parameter R defined by (6). The functions Q(t) which were subsequently deduced 
from these “experiments,” are plotted on Figs. 1 and 2 and their main characteristics 
are summarized in Table I. Note that we use the following reduced units: 

Z/kT = 1, D = 1, 

so that the equilibrium averages (Q2) and (v”) assume the following values: 

(Q2) = kT/Z = 1, 

(v2) = 2kTIM = &(kT/Z) D2(4Z/MD2) = ;R. 

For each experiment we checked the equilibrium state of the system by verifying 
not only that 

(v~)@~) w $R, 

but also 
(iP)/(Q2)2 CT% 3, (v4)/(v2)” N 2 

as implied by the Botzmann distribution. 
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FIG. 1. Autocorrelation function I@) for various densities and for R = 0.5. The solid line 
corresponds to &Go(t) (zero coupling). 

TABLE I 

Results of the various computer experiments; 7 is the average time interval 
between collisions and N is the number of disks of the experiment 

R P 7 7- 1 7R TJ? N 

0.087 8.3 0.120 -.. loo 

0.25 2.61 0.383 3.8 f 0.3 120 

0.5 0.50 0.83 1.20 1.3 * 0.2 120 

0.79 0.204 4.90 2.9 i 0.1 0.39 C 0.08 100 

1.00 0.126 7.96 3.6 rir 0.2 0.24 i 0.05 120 

0.087 26.3 0.038 - 100 
0.25 8.3 0.121 9&l 120 

0.05 0.50 2.64 0.380 3.00 f 0.3 120 

0.79 0.65 1.55 100 

1.00 0.397 2.52 2.9 & 0.1 0.46 i 0.09 120 
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FIG. 2. Autocorrelation function $(t) for various densities and for R = 0.05. The solid line 
corresponds to &,(t) (zero coupling). (The density 0.087 is not shown as the corresponding points 
fall allmost exactly on the curve &,(f).) 

Figure 1 shows the various curves of #(t) for R = 0.5 and for five densities p 
equal to 

0.087, 0.25, 0.50, 0.79, 1.00 

(the density of close-packing is 2/ 16 N 1.15); the first four values correspond to 
fluid states, the last one falls in the solid region. As p increases a clear change is 
seen in 1,4(t): At the lowest density it is practically identical to the function &(t) 
given by (13) and corresponding to zero coupling; in contrast $(t) appears 
approximately exponential for the highest density, with a small Gaussian region 
at very short times, due to inertial effects. 

The behavior of 4(t) for R = 0.05, shown on Fig. 2, is qualitatively the same, 
though not so well marked. This can be interpreted as follows. The role of R is 
two-fold: 

(a) The frequency of collision is proportional to (v>, i.e., to R1/2; this tends 
to reduce inertial effects as R increases and to lengthen the relaxation time. 

(b) The efficiency of an individual collision for changing Q decreases as R 
increases (as I and R are directly proportional); this on the contrary enhances 
inertial effects. 
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It finally turns out that of these two conflicting influences of R, the first one is 
predominant. (For simple real molecules R may reasonably be expected to lay 
between 0.2 and 0.01). 

It seems thus that this model system nicely illustrates the evolution from inertial 
behavior to Debye relaxation. Further insight in the problem can be obtained by 
taking the Fourier transform I&W) and calculating E(W) from (8). Figures 3-6 show 
the real and imaginary parts of C(W) for the two values of R considered here. In all 
cases there is a systematic shift of the curves towards lower frequencies as p 
increases. Moreover, the negative part of E’(W) - 1, occuring at high frequencies 

E’(UL I 
Es - 1 

R : 0.5 

p = 0.25 n 

FIG. 3. Real part of C(W) for various densities and for R = 0.5 (p = 0.087 not shown). The 
solid line corresponds to zero coupling. 
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FIG. 4. Real part of C(W) for various densities and for R = 0.05 (p = 0.087 not shown). The 
solid line corresponds to zero coupling. 
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FIG. 5. Imaginary part of C(W) for various densities and for R = 0.5 (p = 0.087 not shown). 
The solid line corresponds to zero coupling. 

R. 0.05 1 

FIG. 6. Imaginary part of E(W) for various densities and for R = 0.05 (p =: 0.087 not shown). 
The solid line corresponds to zero coupling. 

on account of inertial effects, is progressively destroyed, while the maximum of 
E”(O) becomes more flat and more symmetrical. Unfortunately the accuracy of the 
Fourier transforms is not altogether satisfactory. There is nevertheless a clear 
evolution of E”(W) towards the Debye symmetrical curve with maximum height 
equal to 0.5 [5]. Three cases, namely p = 1.0 and 0.79 for R = 0.5 and p = 1.0 
for R = 0.05, seem not too far from the Debye picture and we have accordingly 
evaluated their corresponding relaxation times TV from the location of the 
maximum of C”(W); see Table I. 

To complete this study we also determined the autocorrelation function of the 
angular velocity of a molecule 

YW = mo) WMQ2) (14) 
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which is, in a sense, complementary to z&t). It turns out that this function is 
exponential to a good approximation 

rp(t) N cti7, (15) 

and the estimated values of TV are listed in Table I for the various “experiments”; 
one will notice the parallel behavior of TV and 7 as p increases, T being the average 
time interval between successive collisions. 

4. STOCHASTIC MODEL OF COLLISIONS 

It will be interesting to compare the above results with a simple stochastic model. 
Consider one particular disk with angular velocity 51, at time 0 and assume that 
this disk suffers a series of IZ collisions during the time interval (0, t), occuring at 
fl , t2 ,..a, t, so that its angular velocity successively takes the values .Q1 , 52, ,..., Q, . 
We have 

(u(0) . u(t)) = cOs{QOtl + Q1(t2 - tl) + **a + sz,(t - tn)) 

the statistical average of which gives z,/(t). Following Gordon [2] we evaluate a,b(t) 
approximately by making three assumptions: 

(a) Given the mean frequency of collisions 7-l, the probability for n collisions 
in the interval (0, t) is given by the Poisson distribution 

e-tqt/T)n/n ! 

(b) The collision times t, , t2 ,..., t, are randomly distributed between 0 and t. 

(4 Qo 5 J-4 ,.-., Q, are completely uncorrelated and distributed according 
to (11). 

Combining assumptions (a)-(c), we get for #(t); 

#(t> = e-“‘: T-~ j: dt, f dt,-, ..a lt4dtl T(t; t, ,..., tn), 
0 

where 

qt; t, ,...) t,) = (24-(“+1)/2 sy s cc . . . &, . . . dQ, e-@‘o*+*-*+~,l) 
--oo -cc 

x cos{Q,t, + qt, - tJ + *.* + Q,(t - t,)} 
= exp(--$[t12 + (tz - t$ + a=* + (t - tn)2]). 
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Rather than 4(t) itself we calculate its Fourier transform $(‘<w). We find easily that 

k4 = 
X(iw + T-l) 

1 - T-lx&J + T-1) ’ (16) 

where 

x@) = 1,” e-t2’2 e-‘t dt (17) 

and finally from (8) we get 

E(W) - 1 1 - (iW + T-l) x(iO + T-l) 

Es - 1 1 - T-1x(iO + T-‘) ’ (18) 

For T -+ co, we recover the infinitely weak coupling limit, i.e., 

E(W) - 1 
Es -1 

= 1 - iw~o(o) 

by noticing that X(iw) = G,,(w). Consider now the opposite case T-l> 1; we then 
have to turn to the asymptotic expansion of X(z) [16], 

X(z) = ; - f + f + *-.. 

If we make the double assumption that 7-l > 1 and 7-l > w, we find from (18) that 

E(W) - 1 1 
Es - 1 E 1 + h/T ’ (20) 

which is nothing else but the Debye expression (5) with 

71 = l/T. (21) 

(This last relation seems to have been established first by E. P. Gross [6]). 
It is also instructive to look for v(t) in this same model. On account of 

assumption (c) one gets rather trivially 

y(t) = (.Qo2) &/T = e-tire (22) 

Hence provided that the frequency of collisions 7-l is much higher than the mean 
rotational frequency (Z#/Z)ll” (here equal to l), and as long as one is interested in 
frequencies w much lower than T-l, the Debye theory is approximately valid and 
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the characteristic relaxation times 7 R , TV of z/~(t) and &t) are respectively given by 

(23) 

These predictions do not agree with the results of Table I, though there is a 
noticeable parallel between the variation of TR , 7-l on one hand and TV , 7 on the 
other hand, as p changes. Equations (23) however suggerates that a simple relation 
exists between TR and TV, namely 

7~7~ C% 1. (24) 

The three cases of Table I for which both TR and TV have been estimated, give 

R = 0.5, p = 0.79 17~7~ = 1.1 f 0.2; 
R = 0.5, p = 1.0 : 7~7~ = 0.9 f 0.2; 

R = 0.05, p = 1.0 : TOTS = 1.3 * 0.3, 

which makes indeed relationship (24) plausible. 
The main origin of the failure of (23) is to be traced to assumption (c) of the 

stochastic model. There obviously exists a persistence of velocity for rotation 
similar to the one known for translation in the kinetic theory of gases [17]. From 
this effect one may, e.g., anticipate that the ratio T*/T is larger than one and 
increases with R, in agreement with Table I. 

5. FINAL REMARKS 

It seems to us that the results obtained here are interesting enough to justify an 
extension of this work to three dimensions, i.e., to rough spheres. We also intend 
to refine the stochastic model of collisions of Section 4 by removing assumption (c), 
which probably is its essential weakness. This will be the object of a forthcoming 
article. 

We want to express our deep appreciation to Mrs. M. Gillis-Festraets and 
Mr. M. Promenschenkel who collaborated to the computational part of the present 
work [18]. 
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